Development of a mathematical model to design an offshore wind and wave hybrid energy system

Authors

  • Hadi Motawej School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
  • Mahdi Moghimi School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
  • Shahram Derakhshan School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
Abstract:

Fossil Fuels are always considered as environmental pollutants. On the other hand, the political and economic situations highly affect the price of these fuels. Offshore wind and wave, as renewable energy sources, represent the better alternatives for electricity generation. Therefore, it is necessary that wind speeds effectively be estimated due to the absence of field measurements of the wind speed above the surface of the sea in many regions. In this paper, the annual-average wind speed above the sea is calculated mathematically. Wind data obtained from onshore monitoring stations were analyzed to obtain wind power density above the sea. In addition, this study provides information on the variation of the wave energy using Beaufort scale and wind speeds. This allows an approximate estimation of energies corresponding to various wave heights in that region. Besides, a mathematical model was developed to assess wave and wind hybrid energy system. Thus, using a mathematical model, wind-wave hybrid system components were: wind turbine, wave converter and foundation. The wave energy converter (WEC) selected for the hybrid device is Wavestar prototype which was combined with a wind turbine. As for case study, the wind speed as well as the resulting wind and wave power potential in the area of Eastern Mediterranean Sea and the North Sea were determined and the assessment were done for the designed hybrid system. It can be concluded that the annual energy production from hybrid wind-wave device in the North Sea is 64.3% more than its value in the Mediterranean Sea.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Experimental Evaluation of IRWEC1, a Novel Offshore Wave Energy Converter

This paper describes the innovative offshore point-absorber wave energy converter (WEC), IRWEC1, under development by the Hydrodynamics, Acoustics and Marine propulsion Group at Babol Noshirvani University of Technology. Totally enclosed in an outer shell, with no external moving parts, IRWEC1 is completely sealed which make it a robust and trustable system. Important motion for this WEC is the...

full text

A conceptual model to determine vulnerability of wildlife populations to offshore wind energy development

As offshore wind energy development is planned in the United States, there is an increasing need for preand post-construction monitoring plans to be focused on species determined to be most vulnerable to hazards of a speci c project. We propose a conceptual model that incorporates biological and sociological parameters. Speci cally, we suggest that demographic, ethological/biological, and popul...

full text

Power Distribution Development and Optimization of Hybrid Energy Storage System

In this paper, the development and optimization of Power Distribution Control Strategy (PDCS) have been performed for a Hybrid Energy Storage Systems (HESS) of a Series Hybrid Electric Bus (SHEB). A common PDCS is based on the use of Ultra-Capacitor (UC) pack. A new simple PDCS is developed as a battery based one. For the battery based PDCS, four parameters ar...

full text

Design and Development of Mathematical Model for Static Mixer

A numerical model for simulating Residence Time Distribution (RTD) of turbulent flows in helical static mixers is proposed and developed to improve the understanding of static mixers. The results of this model is presented in terms of different volumetric flow rate to illustrate the complicated flow patterns that drive the mixing process i...

full text

Analysis and Design of a Domestic Solar-Wind Hybrid Energy System for Low Wind Speeds

A solar-wind hybrid power generation system has been presented here. The application based system illustrated in this paper is designed on the basis of the solar and wind data for areas in Northern India. The power generated by the system is intended for domestic use. The most common source of unconventional power in homes is battery based UPS (Uninterrupted power supply) inverter. The UPS inve...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  181- 200

publication date 2018-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023